Concave Surface Boundary Layer Flows in the Presence of Streamwise Vortices
スポンサーリンク
概要
- 論文の詳細を見る
Concave surface boundary-layer flows are subjected to centrifugal instability which results in the formation of streamwise counter-rotating vortices. Such boundary layer flows have been experimentally investigated on concave surfaces of 1 m and 2 m radius of curvature. In the experiments, to obtain uniform vortex wavelengths, thin perturbation wires placed upstream and perpendicular to the concave surface leading edge, were used to pre-set the wavelengths. Velocity contours were obtained from hot-wire anemometer velocity measurements. The most amplified vortex wavelengths can be pre-set by the spanwise spacing of the thin wires and the free-stream velocity. The velocity contours on the cross-sectional planes at several streamwise locations show the growth and breakdown of the vortices. Three different vortex growth regions can be identified. The occurrence of a secondary instability mode is also shown as mushroom-like structures as a consequence of the non-linear growth of the streamwise vortices. Wall shear stress measurements on concave surface of 1 m radius of curvature reveal that the spanwise-averaged wall shear stress increases well beyond the flat plate boundary layer values. By pre-setting much larger or much smaller vortex wavelength than the most amplified one, the splitting or merging of the streamwise vortices will respectively occur.
- ターボ機械協会、韓国流体機械学会、中国工程熱物理学会、国際水理学会の論文
ターボ機械協会、韓国流体機械学会、中国工程熱物理学会、国際水理学会 | 論文
- Prediction of Wear Depth Distribution by Slurry on a Pump Impeller
- Computational Investigations of Impingement Heat Transfer on an Effused Concave Surface
- Influence of Blade Outlet Angle and Blade Thickness on Performance and Internal Flow Conditions of Mini Centrifugal Pump
- Experimental Study on Surge Inception in a Centrifugal Compressor
- Erratum:Dynamic Analysis of Francis Runners - Experiment and Numerical Simulation[International Journal of Fluid Machinery and Systems Vol. 2 (2009) , No. 4 (October-December), pp.303-314]