A Study on Optimization of Waveguide Dispersion Property Using Function Expansion Based Topology Optimization Method
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, the function expansion based topology optimization is employed to the automatic optimization of the waveguide dispersion property, and the optimum design of low-dispersion slow-light photonic crystal waveguides is demonstrated. In order to realize low-dispersion and large group index, an objective function to be optimized is expressed by the weighted sum of the objective functions for the desired group index and the low-dispersion property, and weighting coefficients are updated through the optimization process.
- The Institute of Electronics, Information and Communication Engineersの論文
The Institute of Electronics, Information and Communication Engineers | 論文
- Compensation Effect of Quasi-Inverse Filter (QIF) on Frequency Characteristic Distortion in Wideband Systems
- Subblock Processing for Frequency-Domain Turbo Equalization under Fast Fading Environments
- Measurement-Based Performance Evaluation of Coded MIMO-OFDM Spatial Multiplexing with MMSE Spatial Filtering in an Indoor Line-of-Sight Environment
- Design of a Multiple-Input SC DC-DC Converter Realizing Long Battery Runtime
- The Influence of a Low-Level Color or Figure Adaptation on a High-Level Face Perception