Influence of Si Surface Roughness on Electrical Characteristics of MOSFET with HfON Gate Insulator Formed by ECR Plasma Sputtering
スポンサーリンク
概要
- 論文の詳細を見る
To improve metal oxide semiconductor field effect transistors (MOSFET) performance, flat interface between gate insulator and silicon (Si) should be realized. In this paper, the influence of Si surface roughness on electrical characteristics of MOSFET with hafnium oxynitride (HfON) gate insulator formed by electron cyclotron resonance (ECR) plasma sputtering was investigated for the first time. The surface roughness of Si substrate was reduced by Ar/4.9%H2 annealing utilizing conventional rapid thermal annealing (RTA) system. The obtained root-mean-square (RMS) roughness was 0.07nm (without annealed: 0.18nm). The HfON was formed by 2nm-thick HfN deposition followed by the Ar/O2 plasma oxidation. The electrical properties of HfON gate insulator were improved by reducing Si surface roughness. It was found that the current drivability of fabricated nMOSFETs was remarkably increased by reducing Si surface roughness. Furthermore, the reduction of Si surface roughness also leads to decrease of the 1/f noise.
- The Institute of Electronics, Information and Communication Engineersの論文
The Institute of Electronics, Information and Communication Engineers | 論文
- Compensation Effect of Quasi-Inverse Filter (QIF) on Frequency Characteristic Distortion in Wideband Systems
- Subblock Processing for Frequency-Domain Turbo Equalization under Fast Fading Environments
- Measurement-Based Performance Evaluation of Coded MIMO-OFDM Spatial Multiplexing with MMSE Spatial Filtering in an Indoor Line-of-Sight Environment
- Design of a Multiple-Input SC DC-DC Converter Realizing Long Battery Runtime
- The Influence of a Low-Level Color or Figure Adaptation on a High-Level Face Perception