多流体近似を用いた高炉の操業シミュレーション
スポンサーリンク
概要
- 論文の詳細を見る
The mathematical simulation of blast furnace operation, which uses theories of reaction kinetics and transport phenomena, has been being developed in past four decades. Although blast furnace was once treated as a black-box-reactor, a lot of experimental and numerical efforts have revealed that multiple regions exist within a furnace. The requirements for more detailed information of their functions and characteristics has been increased, as they revealed. Such demands improves the mathematical simulation model of blast furnace from one-dimensional to multi-dimensional, from steady to transient, and from single phase to multiple phases. This paper explains the outline of the latest mathematical model of blast furnace operation, which is based on multi-fluid theories, reaction kinetics and transport phenomena, and its applications. This model treats four materials, that have different flow characteristics and thermo-physical properties, as fluid. These materials are gas (blast and reaction gases), lump solids (coke and ore), liquids (molten metal and slag) and fine particles (unburnt pulverized coal and fine coke). The equations of motion of these four phases have the same form and are solved by same technique. This way of modeling allows efficient process simulation including heat and mass transfer, and reaction analyses. The model has been applied to a variety of operating conditions, and revealed the in-furnace status of blast furnace in detail.
- 日本混相流学会の論文
日本混相流学会 | 論文
- 不凝縮性ガス存在下における滴状凝縮熱伝達に関する研究
- ドラッグデリバリーシステム
- (株)荏原総合研究所
- 浮遊液滴の回転変形挙動に及ぼす粘性の影響に関する研究
- 浮遊液滴の非線形挙動に関する研究 : 静電浮遊液滴の振動・回転に対する変形挙動