Uniqueness of L1 harmonic functions on rotationally symmetric Riemannian manifolds
スポンサーリンク
概要
- 論文の詳細を見る
We show that any rotationally symmetric Riemannian manifold has the L1-Liouville property for harmonic functions, i.e., any integrable harmonic function on it must be identically constant. We also give a characterization of a manifold which carries a non-constant L1 nonnegative subharmonic function.
- 国立大学法人 東京工業大学大学院理工学研究科数学専攻の論文
国立大学法人 東京工業大学大学院理工学研究科数学専攻 | 論文
- Noncommutative extension of an integral representation theorem of entropy
- Newton-Puiseux approximation and Lojasiewicz exponents
- Complex hypersurfaces diffeomorphic to affine spaces
- Integral means for the first derivative of Blaschke products
- Cesàro summability of successively differentiated series of a Fourier series and its conjugate series