Performance of Mechanical Filters and Respirators for Capturing Nanoparticles -Limitations and Future Direction
スポンサーリンク
概要
- 論文の詳細を見る
There is an increasing concern about the health hazard posed to workers exposed to inhalation of nanoparticles. Inhaling nanoparticles posses an occupational hazard due to elevated amount emitted to the atmosphere and working environment. Nanoparticles have potential toxic properties: the high particle surface area, number concentration, and surface reactivity. Inhalation, the most common route of nanoparticle exposure, has been shown to cause adverse effects on pulmonary functions and the deposited particles in the lung can be translocated to the blood system by passing through the pulmonary protection barriers. Filtration is the simplest and most common method of aerosol control. It is widely used in mechanical ventilation and respiratory protection. However, concerns have been raised regarding the effectiveness of the filters for capturing nanoparticles. This paper reviews the literature on the filtration performance of mechanical filters and respirators against nanoparticles. It includes the discussion about filtration mechanisms, theoretical models, affecting factors of the filtration efficiency, and testing protocols for respirator and filter certification.
- 独立行政法人 労働安全衛生総合研究所の論文
独立行政法人 労働安全衛生総合研究所 | 論文
- Direct effect of vanadium on citrate uptake by rat renal brush border membrane vesicles (BBMV)
- Effect of Platinum Coordination Complex (PtCx) onCitrate Uptake by Rat Renal Brush Border Membrane Vesicles (BBMV): Cisplatin-Intoxicated Rats
- Effect of Platinum Coordination Complex (PtCx) onCitrate Uptake by Rat Renal Brush Border Membrane Vesicles (BBMV): Direct Effect of Carboplatin
- Effect of Platinum Coordination Complex (PtCx) onCitrate Uptake by Rat Renal Brush Border Membrane Vesicles (BBMV): Direct Effect of Cisplatin
- Ergonomic Guidelines for Using Notebook Personal Computers.