Preparation and in vitro apatite-forming ability of porous and non-porous titania microspheres
スポンサーリンク
概要
- 論文の詳細を見る
Porous and non-porous titania microspheres with the anatase or rutile phase were successively prepared by the sol–gel process followed by heat treatment at various temperatures. The pore size of the prepared microspheres was effectively controlled by incorporating silica nanoparticles of different diameters. The apatite-forming ability of the microspheres was investigated in a simulated body fluid, with ion concentrations nearly equal to those of human blood plasma. Results indicated that the titania microspheres with either anatase or rutile structure induced the formation of calcium phosphate compounds (CaPs) on the microsphere surface. The deposition of CaPs was more pronounced on the TiO2 microspheres calcined at 600°C (anatase structure) and 800°C (rutile structure), compared to that calcined at 500°C (anatase structure). Additionally, anatase microspheres with smooth surface and low specific surface area favored the formation of CaPs, compared to porous microspheres. This indicates that nanoscale pores do not essentially favor apatite formation.
- 公益社団法人 日本セラミックス協会の論文
公益社団法人 日本セラミックス協会 | 論文
- Ferromagnetism in Fe doped ZnO synthesized by co-precipitation method
- Study on structural, magnetic and transport properties of La_Ca_Mn_Co_xO_3 (x = 0.01-0.05) thin films
- Fabrication of the finestructured alumina materials with nanoimprint method
- Correlation between the temperature of molten state and the SH intensity of 30BaO・15TiO_2・55GeO_2 crystallized glass
- Preparation of Pt particles dispersing nanocomposites by thermal treatment of tetrachloroplatinate/layered double hydroxide (LDH)