Novel internally quenched fluorogenic substrates for angiotensin I-converting enzyme and carboxypeptidase Y
スポンサーリンク
概要
- 論文の詳細を見る
Angiotensin I-converting enzyme (ACE, EC 3.4.15.1) is one of the most important enzymes in the renin-angiotensin system, a major blood pressure control system in mammals. We synthesized novel internally quenched fluorogenic (IQF) substrates for ACE based on the cleavage site of an angiotensin I, introducing N-methyl anthranic acid (Nma) and N<SUP>ε</SUP>-2,4-dinitrophenyl-lysine (Lys(Dnp))at the N- and C-terminal regions. Kinetic parameters of the synthesized IQF substrates Nma-Phe-His-Lys(Dnp) and Nma-His-Pro-Phe-Lys(Dnp)-Pro were compared with those of a common peptide substrate for ACE, hippuryl (Hip)-His-Leu. The k<SUB>cat</SUB>/K<SUB>m</SUB> values of Nma-Phe-His-Lys(Dnp), Nma-His-Pro-Phe-Lys(Dnp)-Pro, and Hip-His-Leu were 5.12, 1.90, and 0.80 μM<SUP>-1</SUP> s<SUP>-1</SUP> for rabbit lung ACE, and 16.0, 7.36, and 0.30 μM<SUP>-1</SUP> s<SUP>-1</SUP> for recombinant human (rh)-ACE, respectively. These results indicate that Nma-Phe-His-Lys(Dnp) is an excellent substrate for rh-ACE. Carboxypeptidase Y also hydrolyzed Nma-Phe-His-Lys(Dnp) efficiently with K<SUB>m</SUB>, k<SUB>cat</SUB>, and k<SUB>cat</SUB>/K<SUB>m</SUB> values of 60.2 μM, 105 s<SUP>-1</SUP>, and 1.74 μM<SUP>-1</SUP> s<SUP>-1</SUP>, respectively. On the other hand, carboxypeptidase B did not hydrolyze IQF substrates. The newly developed IQF substrate, Nma-Phe-His-Lys(Dnp), is a valuable tool for ACE and carboxypeptidase studies.
- バイオメディカルリサーチプレスの論文
バイオメディカルリサーチプレス | 論文
- Methylseleninic acid (MSA) inhibits 17β-estradiol-induced cell growth in breast cancer T47D cells via enhancement of the antioxidative thioredoxin/ thioredoxin reductase system
- Expression of human factors CD81, claudin-1, scavenger receptor, and occludin in mouse hepatocytes does not confer susceptibility to HCV entry
- Effect of heat on synthesis of gelatinases and pro-inflammatory cytokines in equine tendinocytes
- Histological observations on the microenvironment of osteolytic bone metastasis by breast carcinoma cell line
- Effect of inducible nitric oxide synthase on apoptosis in Candida-induced acute lung injury