Effectiveness of Hydrogen Rich Water on Antioxidant Status of Subjects with Potential Metabolic Syndrome-An Open Label Pilot Study
スポンサーリンク
概要
- 論文の詳細を見る
Metabolic syndrome is characterized by cardiometabolic risk factors that include obesity, insulin resistance, hypertension and dyslipidemia. Oxidative stress is known to play a major role in the pathogenesis of metabolic syndrome. The objective of this study was to examine the effectiveness of hydrogen rich water (1.5–2 L/day) in an open label, 8-week study on 20 subjects with potential metabolic syndrome. Hydrogen rich water was produced, by placing a metallic magnesium stick into drinking water (hydrogen concentration; 0.55–0.65 mM), by the following chemical reaction; Mg + 2H2O → Mg (OH)2 + H2. The consumption of hydrogen rich water for 8 weeks resulted in a 39% increase (p<0.05) in antioxidant enzyme superoxide dismutase (SOD) and a 43% decrease (p<0.05) in thiobarbituric acid reactive substances (TBARS) in urine. Further, subjects demonstrated an 8% increase in high density lipoprotein (HDL)-cholesterol and a 13% decrease in total cholesterol/HDL-cholesterol from baseline to week 4. There was no change in fasting glucose levels during the 8 week study. In conclusion, drinking hydrogen rich water represents a potentially novel therapeutic and preventive strategy for metabolic syndrome. The portable magnesium stick was a safe, easy and effective method of delivering hydrogen rich water for daily consumption by participants in the study.
- 日本酸化ストレス学会 JCBN事務局の論文
日本酸化ストレス学会 JCBN事務局 | 論文
- The Effects of .GAMMA.-Aminobutyric Acid, Vinegar, and Dried Bonito on Blood Pressure in Normotensive and Mildly or Moderately Hypertensive Volunteers
- Retraction: D-Psicose Inhibits Intestinal α-Glucosidase and Suppresses the Glycemic Response after Ingestion of Carbohydrates in Rats
- In-air microparticle induced X-ray emission analysis of particles in interstitial pneumonia lung tissue obtained by transbronchial biopsy
- Nucleoprotein Diet Ameliorates Arthritis Symptoms in Mice Transgenic for Human T-Cell Leukemia Virus Type I (HTLV-1)
- Distribution and Major Sources of Flavonoid Intakes in the Middle-Aged Japanese Women