Stress Concentrations Around a Circular Inclusion or Hole in an Infinite Fluid-Saturated Poroelastic Plate for a Wide Range of Poisson's Ratio
スポンサーリンク
概要
- 論文の詳細を見る
Three 2-D stress concentration problems are treated for a fluid-saturated, poroelastic, infinite plate with a rigid circular inclusion, a permeable or an impermeable circular hole, subjected to a step-like, uniform, uniaxial tension at infinity, with account of a full range of drained Poisson's ratio. Those are analytically solved in the Laplace space and numerically inverted into the time domain. The numerical results and various limiting solutions are discussed. It is found that the stress concentration is in general alleviated by the existence of pore fluid for the three problems and that a discontinuity in the pore fluid pressure and tangential stress takes place immediately after loading at the hole periphery. It is also found that the mechanical response in the case of (the lower limit of drained Poisson's ratio) is counter-intuitive and shows another discontinuity for infinite time elapsing.
- 日本学術会議 「機械工学委員会・土木工学・建築学委員会合同IUTAM分科会」の論文
日本学術会議 「機械工学委員会・土木工学・建築学委員会合同IUTAM分科会」 | 論文
- Study on Numerical Simulation for Vibro-Acoustic Response of Spacecraft
- 人工関節用セラミックスの摩擦摩耗挙動に対する材料組合せ・潤滑剤・表面膜の影響
- 擬似圧縮性DESによる風車後流の3次元数値解析と後流モデル化に関する研究
- ハイブリッド吊床版道路橋の耐風性能
- 一般断面を有する多重連結型開水路網に生じるダム崩壊問題に対する双対格子に基づいた有限体積モデル