Chromatin Reconstitution: Development of a Salt-dialysis Method Monitored by Nano-technology.
スポンサーリンク
概要
- 論文の詳細を見る
The regulation of DNA replication and transcription is achieved by dynamic structural changes of chromatin in which a series of proteins will acquire accessibility to specific regions of the DNA strand. A combination of biochemistry and nano-technology is essential to address questions regarding the structural basis for such macromolecular mechanisms. In the present study, we established an efficient salt-dialysis method of chromatin reconstitution and employed atomic force microscopy (AFM) as a single-molecule-imaging technique, to monitor the efficiency of the reconstitution. At first, the reconstitution efficiency with short DNA molecules of several kilo-base pairs was low, although the salt dialysis yielded a "beads-on-a-string" structure of oligonucleosomes with each nucleosome trapping 158<SUP>+/-</SUP>27 bp DNA. However, the efficiency for nucleosome formation became higher when longer DNA molecules with a super-helical constraint were used. A statistical analysis of the obtained AFM images identified a first-order relationship between the efficiency of the reconstitution and the length of the super-coiled DNA used. A high efficiency of ~290 bp/nucleosome that is close to the <I>in vivo</I> situation was obtained with a ~100 kbp template DNA. This enabled the structure-function studies of long chromatin molecules under well-defined conditions.
- 国際組織細胞学会の論文
国際組織細胞学会 | 論文
- Immunohistochemical localization of vascular endothelial growth factor in the endocrine glands of the rat
- Reduced expression of endogenous secretory receptor for advanced glycation endproducts in hippocampal neurons of Alzheimer’s disease brains
- A longitudinal study on the expression of the opsin gene in the degenerating retina of C3H/He mice.
- Expression of the arylhydrocarbon receptor in the periimplantation period of the mouse uterus and the impact of dioxin on mouse implantation
- Immunohistochemical studies on the development of tyrosine hydroxylase- and serotonin-immunoreactive neurons in fetal dorsal raphe tissue transplanted into the anterior eye chamber of adult rats.