CuNb/Nb3Sn超伝導線材の超伝導特性に与える事前曲げ歪みの効果
スポンサーリンク
概要
- 論文の詳細を見る
In order to develop a Nb3Sn coil using a react and wind method, it is important to clarify the influence of bending strain because the superconducting characteristics of Nb3Sn are very sensitive to stress and strain. We investigated the effect of prebending strain εpb, which means repeated bending loads, from 0% to 1.5% for superconducting wires. We found that Ic, Tc and Bc2 were enhanced by prebending strain. When the prebending strain was 0.8%, Ic values showed maximum enhancement at a whole magnetic field for CuNb/Nb3Sn wires. For instance, Ic was approximately twice at 19 T. Bc2 increased about 1.5 T at a whole temperature when εpb was 1.0%. Tc increased from 17.5 K to 17.9 K at a prebending strain of 1.2%.
- 公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会)の論文
公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会) | 論文
- Test Results of the SMES Model Coil. Cool-down and Thermal Characteristics.:Cool-down and Thermal Characteristics
- Crystal Growth of Y Based Superconductors on Solidification Processing.
- Refrigeration of pressurized He II using a 3He circulation system. (II). Behavior of the system during the initial cooling and after a pulsed heat generation.:Behavior of the System during the Initial Cooling and after a Pulsed Heat Generation
- Quench simulation analysis of a superconducting coil. II. Simulation.:II. Simulation
- タイトル無し