Role of Rho/Rho-Kinase and NO/cGMP Signaling Pathways in Vascular Function Prior to Atherosclerosis
スポンサーリンク
概要
- 論文の詳細を見る
Aim: Atherosclerosis is a cardiovascular disease; however, there is little information on signal transduction for vascular function in the early stage of atherosclerosis. In this work, we investigated the role of Rho/Rho-kinase and nitrogen oxide (NO)/cyclic GMP (cGMP) signaling pathways in the aorta prior to atherosclerosis.<BR>Methods: Tension, the expression of RhoA protein, Rho-kinase activity and the cGMP level were measured using endothelium-intact or -denuded aorta prepared from apolipoprotein E-deficient (apoE-KO) and C57BL/6 wild-type (WT) mice at 2 months of age.<BR>Results: Phenylephrine (PE) induced less maximal contraction in the endothelium-denuded aorta from apoE-KO than from WT mice. A Rho-kinase inhibitor (Y-27632) reduced more effectively the contraction of apoE-KO than WT mice, but their RhoA proteins and Rho-kinase activities were not so different. Acetylcholine caused larger relaxation of the PE-stimulated, endothelium-intact aorta in apoE-KO due to endothelial NO release than WT mice. The basal cGMP level in the endotheliumintact aorta of apoE-KO mice was higher than that of WT.<BR>Conclusions: Smooth muscle contraction via α1-adrenergic receptor shows higher dependency on Rho-kinase activity, suggesting down-regulation of the mechanism different from Rho/Rho kinase signaling in the aorta prior to atherosclerosis. Endothelium-dependent relaxation is also intensified through the NO/cGMP pathway.
- 一般社団法人 日本動脈硬化学会の論文
一般社団法人 日本動脈硬化学会 | 論文
- Effects of Lysosomal Protease Inhibitors on the Degradation of Acetylated Low Density Lipoprotein in Cultured Rat Peritoneal Macrophages
- Genomic Structure and Mapping of Human Orphan Receptor LXR Alpha : Upregulation of LXRa mRNA During Monocyte to Macrophage Differentiation
- The Gene Expression Profile of Human Umbilical Vein Endothelial Cells Stimulated by Tumor Necrosis Factor a Using DNA Microarray Analysis
- Participation of T Lymphocytes and Macrophages in Atherogenesis
- Immunohistochemical and Quantitative Analysis of Cellular and Extracellular Components of Aortic Atherosclerosis in WHHL Rabbits