Frank-Starling Mechanism Retains Recirculation Fraction of Myocardial Ca2+ the Beating Heart.
スポンサーリンク
概要
- 論文の詳細を見る
Myocardial Ca2+ handling in excitation-contraction coupling is the second primary determinant of energy or O2 demand in a working heart. The intracellular and extracellular routes remove myocardial Ca2+ that was released into the sarcoplasma with different Ca2+: ATP stoichiometries. The intracellular route is twice as economical as the extracellular route. Therefore the fraction of total Ca2+ removed via the sarcoplasmic reticulum, i.e., the recirculation fraction of intracellular Ca2+ (RF), determines the economy of myocardial Ca2+ handling. RF has conventionally been estimated as the exponential decay rate of postextrasystolic potentiation (PESP). However, we have found that PESP usually decays in alternans, but not exponentially in the canine left ventricle beating above 100 beats/min. We have succeeded in estimating RF from the exponential decay component of an alternans PESP. We previously found that the Frank-Starling mechanism or varied ventricular preload did not affect the economy of myocardial Ca2+ handling. Then, to account for this important finding, we hypothesized that the Frank-Starling mechanism would not affect RF at a constant heart rate. We tested this hypothesis and found its supportive evidence in 11 canine left ventricles. We conclude that RF at a constant heart rate would remain constant, independent of the Frank-Starling mechanism.
- 日本生理学会の論文
日本生理学会 | 論文
- 大脳基底核の機能 : パーキンソン病との関連において
- 低温環境下で飼育したカエルの前根電位の変化
- 2,5-ヘキサンジオン投与によるラット会陰筋のミオシン重鎖アイソフォーム成分の変化
- 後肢懸垂によるラットヒラメ筋線維のミオシン重鎖アイソフォーム発現パターンの変化
- 生体における酸素の効率的利用機構