Use of Integrated Observations to Improve 0-36 h Flood Forecasting: Development and Application of a Coupled Atmosphere-Hydrology System in the Nanpan River Basin, China
スポンサーリンク
概要
- 論文の詳細を見る
The accuracy of 0-36 h real-time flood forecasting is largely determined by the quantitative precipitation forecasts (QPFs), but convective weather remains a significant challenge for numerical weather prediction systems. Therefore, it is crucial to improve the QPFs' accuracies to predict and prevent flash flood disasters.A coupled atmosphere-hydrology system with the WRF model (together with a three-dimensional variational data assimilation system, 3DVAR) and a distributed biosphere hydrological model (WEB-DHM) is described. This system was then applied to the flood forecasting of the Nanpan River Basin (Yunnan province, China) for 1 July 2008. Based on the available observations (230 surface meteorological sites, 10 conventional Radiosonde sites, and 8 ground-based GPS stations), a series of experiments were conducted with the WRF-3DVAR to investigate the contributions of different observations to QPF accuracy and flood forecasting. Forced with the observations or the WRF model outputs, WEB-DHM predicts stream-flow at the basin outlet. The overall better performance by the assimilation experiments over the no assimilation case has been clearly demonstrated in the predictions of the 0-36 h heavy rainfall (magnitude and spatial pattern) and flash flood occurrence ( peak value and time). The WRF-3DVAR only assimilating GPS data performs poorly, showing the necessity to improve both the assimilation technique and the spatial resolution for the operational numerical weather forecasts. To our knowledge, this work is the first to utilize comprehensive observations around the Tibetan Plateau with a coupled atmosphere-hydrology system to improve short-term flood predictions.
- 公益社団法人 日本気象学会の論文
公益社団法人 日本気象学会 | 論文
- Low Cloud Modulation by Synoptic Waves over the Eastern Tropical Pacific
- Interdecadal Variability of the Seasonal-scale Persistence in the Tropical Mean Tropospheric Temperature
- Predictability of the Mean Location of Typhoon Formation in a Seasonal Prediction Experiment with a Coupled General Circulation Model
- Comparison of Meisei RS2-91 Rawinsondes and Vaisala RS92-SGP Radiosondes at Tateno for the Data Continuity for Climatic Data Analysis
- Isotopic Variations Associated with North-South Displacement of the Baiu Front