アデノシン三リン酸(ATP)の放射線バイスタンダー効果への情報伝達分子としての関与
スポンサーリンク
概要
- 論文の詳細を見る
We previously reported that low doses (0.25-0.5 Gy) of γ-rays induce intracellular antioxidant, radioresistant, DNA damage repair, and so on. Meanwhile, we have recently reported that ATP is released from the cells exposed to low-dose γ-rays. Here, it was investigated whether or not γ-radiation-induced release of extracellular ATP contributes to various radiation effects, in paricular, focusing on the inductions of intracellular antioxidant and DNA damage repair. Irradiation with γ-rays or exogenously added ATP increased expression of intracellular antioxidants such as thioredoxin and the increases were blocked by pretreatment with an ecto-nucleotidase in both cases. Moreover, release of ATP and autocrine/paracrine positive feedback through P2Y receptors serve to amplify the cellular repair response to radiation-induced DNA damage. To sum up, it would be suggested that ATP signaling is important for the effective induction of radiation stress response, such as protection of the body from the radiation and DNA damage repair. In addition, the possibility that this signaling is involved in the radiation resistance of cancer cells and beneficial effect on the organism of low-dose radiation and radiation adaptive response, would be further suggested.
- 公益社団法人 日本薬学会の論文
公益社団法人 日本薬学会 | 論文
- Effects of Nutrition Support Team Services on Outcomes in ICU Patients
- The Mechanisms of Insulin Secretion and Calcium Signaling in Pancreatic β-Cells Exposed to Fluoroquinolones
- Intrathecal Ketamine and Pregabalin at Sub-effective Doses Synergistically Reduces Neuropathic Pain without Motor Dysfunction in Mice
- Discovering Some Novel 7-Chloroquinolines Carrying a Biologically Active Benzenesulfonamide Moiety as a New Class of Anticancer Agents
- Novel Insights into Disease Modeling Using Induced Pluripotent Stem Cells