Development of the VESUVIUS Code for Steam Explosion Analysis. Part 1: Molten Jet Breakup Modeling.:Part 1: Molten Jet Breakup Modeling
スポンサーリンク
概要
- 論文の詳細を見る
With steam explosions in the reactor pressure vessel now considered to pose an acceptably small risk to the safety of a nuclear light water reactor, steam explosions in the containment vessel are being given considerable attention. In these hypothesized events, molten nuclear fuel is ejected into the containment vessel as a high-temperature jet surrounded by molten particles. The jet undergoes breakup in the coolant pool and, as it mixes with coolant, explosively high evaporation rates may arise. Herein, a jet breakup model for containment vessel scenarios, with the primary breakup mechanism being the Kelvin-Helmholtz instability, is described.The one-dimensional jet breakup model solves mass and energy conservation equations for the vapor film surrounding the jet and for jet fragmentation and returns these results back to the VESUVIUS code for analysis of jet dynamics and the entire steam explosion process. In the companion Part 2 paper, comparisons of VESUVIUS calculation results against experimental data are discussed.
- 日本混相流学会の論文
日本混相流学会 | 論文
- 不凝縮性ガス存在下における滴状凝縮熱伝達に関する研究
- ドラッグデリバリーシステム
- (株)荏原総合研究所
- 浮遊液滴の回転変形挙動に及ぼす粘性の影響に関する研究
- 浮遊液滴の非線形挙動に関する研究 : 静電浮遊液滴の振動・回転に対する変形挙動