:Identification of material constants by using a spherical indenter
スポンサーリンク
概要
- 論文の詳細を見る
The inverse analysis using Kalman's filter on the indentation load and depth curves measured by using a spherical indenter was carried out to identify the material constants: Young's modulus, yield stress, work hardening coefficient and exponent used in the constitutive equation given as power law. The advantage of the spherical indenter was shown by the simulation analyses using some material models. Uniaxial tensile tests using austenitic stainless steel and aluminum alloy were performed and compared with the analytical results using the constitutive equation with the identified material constants. As a result, it was confirmed that the presented technique is useful to identify the material constants of a sub-surface of materials and/or coating, etc.
- 日本実験力学会の論文
日本実験力学会 | 論文
- 複数縁き裂の応力拡大係数の干渉効果(中央部き裂のKと各き裂のK,K_について)
- 複数縁き裂の応力拡大係数の干渉効果について : 一様引張りを受ける帯板で中央縁き裂に存在するK_Iのコースティックス法による解
- 複数縁き裂の応力拡大係数の干渉効果(中央部き裂のKと各き裂のK,K_について)
- 複数縁き裂の応力拡大係数の干渉効果(中央部き裂のKと各き裂のK,K_について)
- 複数縁き裂の応力拡大係数の干渉効果(中央部き裂のKと各き裂のK,K_について)