Developing Population Pharmacokinetic Parameters for High-Dose Methotrexate Therapy: Implication of Correlations among Developed Parameters for Individual Parameter Estimation Using the Bayesian Least-Squares Method
スポンサーリンク
概要
- 論文の詳細を見る
Bayesian estimation enables the individual pharmacokinetic parameters of the medication administrated to be estimated using only a few blood concentrations. Due to wide inter-individual variability in the pharmacokinetics of methotrexate (MTX), the concentration of MTX needs to be frequently determined during high-dose MTX therapy in order to prevent toxic adverse events. To apply the benefits of Bayesian estimation to cases treated with this therapy, we attempted to develop an estimation method using the Bayesian least-squares method, which is commonly used for therapeutic monitoring in a clinical setting. Because this method hypothesizes independency among population pharmacokinetic parameters, we focused on correlations among population pharmacokinetic parameters used to estimate individual parameters. A two-compartment model adequately described the observed concentration of MTX. The individual pharmacokinetic parameters of MTX were estimated in 57 cases using the maximum likelihood method. Among the available parameters accounting for a 2-compartment model, V1, k10, k12, and k21 were found to be the combination showing the weakest correlations, which indicated that this combination was best suited to the Bayesian least-squares method. Using this combination of population pharmacokinetic parameters, Bayesian estimation provided an accurate estimation of individual parameters. In addition, we demonstrated that the degree of correlation among population pharmacokinetic parameters used in the estimation affected the precision of the estimates. This result highlights the necessity of assessing correlations among the population pharmacokinetic parameters used in the Bayesian least-squares method.
- 公益社団法人 日本薬学会の論文
公益社団法人 日本薬学会 | 論文
- Effects of Nutrition Support Team Services on Outcomes in ICU Patients
- The Mechanisms of Insulin Secretion and Calcium Signaling in Pancreatic β-Cells Exposed to Fluoroquinolones
- Intrathecal Ketamine and Pregabalin at Sub-effective Doses Synergistically Reduces Neuropathic Pain without Motor Dysfunction in Mice
- Discovering Some Novel 7-Chloroquinolines Carrying a Biologically Active Benzenesulfonamide Moiety as a New Class of Anticancer Agents
- Novel Insights into Disease Modeling Using Induced Pluripotent Stem Cells