Probabilistic spectral envelope modeling of musical instruments within the non-negative matrix factorization framework for mixed music analysis
スポンサーリンク
概要
- 論文の詳細を見る
Non-negative matrix factorization (NMF) has been one of the most useful techniques for musical signal analysis in recent years. In particular, supervised NMF, in which a large number of instrumental samples are used for the analysis, is garnering much attention with respect to analytical accuracy and speed. The accuracy, however, deteriorates if the system does not have enough samples. Therefore, in principle, such methods require as many samples as possible in order for the analysis to be accurate. In this paper, we propose an analysis method that 1) does not require the collection of a large number of training samples, and 2) combines the NMF and probabilistic approaches. In this approach, it is assumed that each instrumental category has a model-invariant feature, called a probabilistic spectral envelope (PSE). As an extension of a spectral envelope, this feature represents the probabilities of spectral envelopes belonging to the instrumental category in a two-dimensional (frequency-amplitude) space. The analysis of an input musical signal is carried out using a supervised NMF framework, where the basis matrix contains the optimum spectra that have been generated from pretrained PSEs.
- 一般社団法人 日本音響学会の論文
一般社団法人 日本音響学会 | 論文
- How large is the individual difference in hearing sensitivity?: Establishment of ISO 28961 on the statistical distribution of hearing thresholds of otologically normal young persons
- Applying generation process model constraint to fundamental frequency contours generated by hidden-Markov-model-based speech synthesis
- Vocal cord vibration in the production of consonants. Observation by means of high-speed digital imaging using a fiberscope.:Observation by means of high-speed digital imaging using a fiberscope
- The early reflections of the impulse response in an auditorium.
- Multiple reflections between rigid plane panels.