Ca+2 Signal is Generated Only Once in the Mating Pheromone Response Pathway in Saccharomyces cerevisiae.
スポンサーリンク
概要
- 論文の詳細を見る
The mating pheromone, a-factor, of the yeast Saccharomyces cerevisiae binds to the heterotrimeric G protein-coupled cell surface receptor of MATa cells and induces cellular responses necessary for mating. In higher eukaryotic cells, many hormones and growth factors rapidly mobilize a second messenger, Ca2+, by means of receptor-G protein signaling. Although striking similarities between the mechanisms of the receptor-G protein signaling in yeast and higher eukaryotes have long been known, it is still uncertain whether the pheromone rapidly mobilizes Ca2+ necessary for early events of the pheromone response. Here we reexamine this problem using sensitive methods for detecting Ca2+ fluxes and mobilization, and find no evidence that there is rapid Ca2+ influx leading to a rapid increase in the cytosolic free Ca2+ concentration. In addition, the yeast PLC1 deletion mutant lacking phosphoinositide-specific phospholipase C, a key enzyme for generating Ca2+ signals in higher eukaryotic cells, responds normally to the pheromone. These findings suggest that the receptor-G protein signaling does not utilize Ca2+ as a second messenger in the early stage of the pheromone response pathway. Since the receptor-G protein signaling does stimulate Ca2+ influx after early events have finished and this stimulation is essential for late events in the pheromone response pathway {Iida et al., (1990) J. Biol. Chem., 265: 13391-13399} Ca2+ may be used only once in the signal transduction pathway in unicellular eukaryotes such as yeast.</p>
- 日本細胞生物学会の論文
日本細胞生物学会 | 論文
- テトラヒメナにおけるDNA-核膜複合体の研究 (細胞核内小器官の生物学)
- 核小体におけるリボゾ-ムRNA合成の制御 (細胞核内小器官の生物学)
- 細胞分裂とその調節-分裂装置をめぐって (細胞増殖と分化)
- 細胞雑種研究の現状 (細胞融合)
- 浮遊増殖性癌細胞の無血清培養と培地添加アルブミンの役割 (細胞融合)