Turnover of Tubulin in Ciliary Outer Doublet Microtubules.
スポンサーリンク
概要
- 論文の詳細を見る
Previous pulse-chase labeling studies have shown that structural proteins incorporate into fully assembled sea urchin embryonic cilia at rates approaching those of full regeneration. When all background ciliogenesis was suppressed by taxol, the turnover of most proteins, including tubulin, continued (23). The present study utilized chemical dissection to explore the route of tubulin incorporation in the presence of taxol and also in steady-state cilia from prism stage embryos. Surprisingly, in cilia from untreated embryos, the most heavily labeled tubulin was found in the most stable portion of the doublet microtubles, the junctional protofilaments. With taxol, this preferential incorporation was suppressed, although control-level turnover still took place in the remainder of the doublet. This paradoxical result was confirmed by pulse-chase labeling and immediately isolating steady-state cilia, then isolating two additional crops of cilia regenerated, respectively, from pools of high and then decreased label. In each case, the level of label occurring in the tubulin from the junctional protofilaments, compared with that from the remainder of the doublet, correlated with the level of pool label from which it must exchange or assemble. These data indicate that ciliary outer doublet microtubules are dynamic structures and that the junctional region is not inert. Plausible mechanisms of incorporation and turnover of tububin in fully-assembled, fully-motile cilia can now be assessed with regared to recent discoveries, particularly intraflagellar transport, distal tip incorporation, and treadmilling.
- 日本細胞生物学会の論文
日本細胞生物学会 | 論文
- テトラヒメナにおけるDNA-核膜複合体の研究 (細胞核内小器官の生物学)
- 核小体におけるリボゾ-ムRNA合成の制御 (細胞核内小器官の生物学)
- 細胞分裂とその調節-分裂装置をめぐって (細胞増殖と分化)
- 細胞雑種研究の現状 (細胞融合)
- 浮遊増殖性癌細胞の無血清培養と培地添加アルブミンの役割 (細胞融合)