Effects of Particle Diameter and Number of Coordinates on Ignition of Liquid Fuel Particles Array by Propagating Laminar Flame.
スポンサーリンク
概要
- 論文の詳細を見る
An experimental study has been performed on the ignition process of liquid fuel particles to obtain the fundamental data of spray combustion. The particles consisted of the center particle and ligands arranged in a geometric configuration. The number of ligands was defined as coordination number. The particles were set in a combustion chamber and the combustion chamber was filled with a propane-air mixture at atmospheric pressure. The propagating laminar flame was formed with the hot wire ignition and the particles were ignited by the flame. The results showed that in case of coordination number 3, the dimensionless ignition delay of the center particle decreased with a decrease in the dimensionless particle distance, and that in case of coordination number 4 and 6, the dimensionless ignition delay of the center particle had a minimum. The minimum was the smallest in case of coordination number 6. The smaller particle diameter had the larger dimensionless particle distance that showed the minimun dimensionless ignition delay.
- 一般社団法人 日本エネルギー学会の論文
一般社団法人 日本エネルギー学会 | 論文
- Modifying Optical Texture of the Coke from Miike Coal
- Development of Petrochemical Industry with the Background of Iron Manufacturing Industry
- タイトル無し
- Study on Development of Waste Oil Combustion Burner for Energy Saving and Low-Pollution (II): Combustion of Waste Oil and Exhaust Emission Characteristics by Internal Mixing Twin-Fluid Atomizer:Combustion of Waste Oil and Exhaust Emission Characteristics
- Study on Development of Waste Oil Combustion Burner for Energy Saving and Low-Pollution (I): Atomization of High-Viscous Liquid Jet by Internal Mixing Twin-Fluid Atomizer:Atomization of High-Viscous Liquid Jet by Internal Mixing Twin-Fluid Atomizer