PROTEIN COMPLEX PREDICTION BASED ON MUTUALLY EXCLUSIVE INTERACTIONS IN PROTEIN INTERACTION NETWORK
スポンサーリンク
概要
- 論文の詳細を見る
The increasing amount of available Protein-Protein Interaction (PPI) data enables scalable methods for the protein complex prediction. A protein complex is a group of two or more proteins formed by interactions that are stable over time, and it generally corresponds to a dense sub-graph in PPI Network (PPIN). However, dense sub-graphs correspond not only to stable protein complexes but also to sets of proteins including dynamic interactions. As a result, conventional simple PPIN based graph-theoreticlustering methods have high false positive rates in protein complex prediction. In this paper, we propose an approach to predict protein complexes based on the integration of PPI data and mutually exclusive interaction information drawn from structural interface data of protein domains. The extraction of Simultaneous Protein Interaction Cluster (SPIC) is the essence of our approach, which excludes interaction conflicts in network clusters by achieving mutually exclusion among interactions. The concept of SPIC was applied to conventional graph-theoretic clustering algorithms, MCODE and LCMA, to evaluate the density of clusters for protein complex prediction. The comparison with original graph-theoreticlustering algorithms verified the effectiveness of our approach; SPIC based methods refined false positives of original methods to be true positive complexes, without any loss of true positive predictions yielded by original methods.
- 日本バイオインフォマティクス学会の論文
日本バイオインフォマティクス学会 | 論文
- Performance Improvement in Protein N-Myristoyl Classification by BONSAI with Insignificant Indexing Symbol
- A combined pathway to simulate CDK-dependent phosphorylation and ARF-dependent stabilization for p53 transcriptional activity
- A versatile petri net based architecture for modeling and simulation of complex biological processes
- XML documentation of biopathways and their simulations in Genomic Object Net
- Prediction of debacle points for robustness of biological pathways by using recurrent neural networks