Exploratory simulation of cell ageing using hierarchical models
スポンサーリンク
概要
- 論文の詳細を見る
Thorough knowledge of the model organism <I>S. cerevisiae</I> has fueled efforts in developing theories of cell ageing since the 1950s. Models of these theories aim to provide insight into the general biological processes of ageing, as well as to have predictive power for guiding experimental studies such as cell rejuvenation. Current efforts in <I>in silico</I> modeling are frustrated by the lack of efficient simulation tools that admit precise mathematical models at both cell and population levels simultaneously. We developed a novel hierarchical simulation tool that allows dynamic creation of entities while rigorously preserving the mathematical semantics of the model. We used it to expand a single-cell model of protein damage segregation to a cell population model that explicitly tracks mother-daughter relations. Large-scale exploration of the resulting tree of simulations established that daughters of older mothers show a rejuvenation effect, consistent with experimental results. The combination of a single-cell model and a simulation platform permitting parallel composition and dynamic node creation has proved to be an efficient tool for in silico exploration of cell behavior.
- 日本バイオインフォマティクス学会の論文
日本バイオインフォマティクス学会 | 論文
- Performance Improvement in Protein N-Myristoyl Classification by BONSAI with Insignificant Indexing Symbol
- A combined pathway to simulate CDK-dependent phosphorylation and ARF-dependent stabilization for p53 transcriptional activity
- A versatile petri net based architecture for modeling and simulation of complex biological processes
- XML documentation of biopathways and their simulations in Genomic Object Net
- Prediction of debacle points for robustness of biological pathways by using recurrent neural networks