NETWORK ANALYSIS OF ADVERSE DRUG INTERACTIONS
スポンサーリンク
概要
- 論文の詳細を見る
Harmful effects associated with use of drugs are caused as a result of their side effects and combined use of different drugs. These drug interactions result in increased or decreased drug effects, or produce other new unwanted effects and are serious problems for medical institutions and pharmaceutical companies. In this study, we created a drug-drug interaction network from drug package inserts and characterized drug interactions. The known information about the potential risk of drug interactions is described in drug package inserts. Japanese drug package inserts are stored in the JAPIC (Japan Pharmaceutical Information Center) database and GenomeNet provides the GenomeNet pharmaceutical products database, which integrate the JAPIC and KEGG databases. We extracted drug interaction data from GenomeNet, where interactions are classified according to risks, contraindications or cautions for coadministration, and some entries include information about enzymes metabolizing the drugs. We defined drug target and drug-metabolizing enzymes as interaction factors using information on them in KEGG DRUG, and classified drugs into pharmacological/chemical subgroups. In the resulting drug-drug interaction network, the drugs that are associated with the same interaction factors are closely interconnected. Mechanisms of these interactions were then identified by each interaction factor. To characterize other interactions without interaction factors, we used the ATC classification system and found an association between interaction mechanisms and pharmacological/chemical subgroups.
- 日本バイオインフォマティクス学会の論文
日本バイオインフォマティクス学会 | 論文
- Performance Improvement in Protein N-Myristoyl Classification by BONSAI with Insignificant Indexing Symbol
- A combined pathway to simulate CDK-dependent phosphorylation and ARF-dependent stabilization for p53 transcriptional activity
- A versatile petri net based architecture for modeling and simulation of complex biological processes
- XML documentation of biopathways and their simulations in Genomic Object Net
- Prediction of debacle points for robustness of biological pathways by using recurrent neural networks