Reverse Engineering Genetic Networks Using Evolutionary Computation
スポンサーリンク
概要
- 論文の詳細を見る
This paper proposes an improved evolutionary method for constructing the underlying network structure and inferring effective kinetic parameters from the time series data of gene expression using decoupled S-system formalism. We employed Trigonometric Differential Evolution (TDE) as the optimization engine of our algorithm for capturing the dynamics in gene expression data. A more effective fitness function for attaining the sparse structure, which is the hallmark of biological networks, has been applied. Experiments on artificial genetic network show the power of the algorithm in constructing the network structure and predicting the regulatory parameters. The method is used to evaluate interactions between genes in the SOS signaling pathway in <I>Escherichia coli</I> using gene expression data.
- 日本バイオインフォマティクス学会の論文
日本バイオインフォマティクス学会 | 論文
- Performance Improvement in Protein N-Myristoyl Classification by BONSAI with Insignificant Indexing Symbol
- A combined pathway to simulate CDK-dependent phosphorylation and ARF-dependent stabilization for p53 transcriptional activity
- A versatile petri net based architecture for modeling and simulation of complex biological processes
- XML documentation of biopathways and their simulations in Genomic Object Net
- Prediction of debacle points for robustness of biological pathways by using recurrent neural networks