Diagnosis of Early Relapse in Ovarian Cancer Using Serum Proteomic Profiling
スポンサーリンク
概要
- 論文の詳細を見る
Surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry data has been increasingly analyzed for identifying biomarkers to help early detection of the disease. Ovarian cancer commonly recurs at the rate of 75% within a few months or several years later after standard treatment. Since recurrent ovarian cancer is relatively difficult to be diagnosed and small tumors generally respond better to treatment, new methods for the detection of early relapse in ovarian cancer are urgently needed. Here, we propose a new algorithm SVM-MB/RFE (SVMMarkov Blanket/Recursive Feature Elimination) based on SVM-RFE, which identifies biomarkers for predicting the early recurrence of ovarian cancer. In this approach, we first apply t-test for feature pruning and then binning using 5-fold cross validation. Finally, 58 peaks are obtained from 27000 of the raw data. Such dramatically reduced features relax the computational burden in the next step of our algorithm. We compare the performance of three feature selection algorithms and demonstrate that SVM-MB/RFE outperforms other methods.
- 日本バイオインフォマティクス学会の論文
日本バイオインフォマティクス学会 | 論文
- Performance Improvement in Protein N-Myristoyl Classification by BONSAI with Insignificant Indexing Symbol
- A combined pathway to simulate CDK-dependent phosphorylation and ARF-dependent stabilization for p53 transcriptional activity
- A versatile petri net based architecture for modeling and simulation of complex biological processes
- XML documentation of biopathways and their simulations in Genomic Object Net
- Prediction of debacle points for robustness of biological pathways by using recurrent neural networks