Combining Bioinformatics Resources for the Structural Modelling of Eukarvotic Metabolic Networks
スポンサーリンク
概要
- 論文の詳細を見る
The architecture of the cellular metabolic network is almost completely available from several databases. This has paved the way for computational analyses. Whereas kinetic modelling is still restrained to small metabolic sub-systems for which enzyme-kinetic details are known, so-called structural modelling techniques can be applied to complete metabolic networks even if the kinetics and regulation of the underlying enzymes is still unknown. Structural modelling requires detailed information on the presence of metabolic enzymes in a specific cell type of interest and the thermodynamics of the reactions, determining their direction under cellular conditions. If compartments are distinguished the sub-cellular compartmentation of reactions and enzymes and the membrane transporters exchanging metabolites between cellular compartments must be included. All this information cannot be taken from a single data base but has to be compiled from various Bioinformatics resources. Here we present an approach towards the organization of Bioinformatics data that enables the flux-balance analysis of comprehensive compartmentalized metabolic networks of eukaryotic cells with special focus on human hepatocytes.
- 日本バイオインフォマティクス学会の論文
日本バイオインフォマティクス学会 | 論文
- Performance Improvement in Protein N-Myristoyl Classification by BONSAI with Insignificant Indexing Symbol
- A combined pathway to simulate CDK-dependent phosphorylation and ARF-dependent stabilization for p53 transcriptional activity
- A versatile petri net based architecture for modeling and simulation of complex biological processes
- XML documentation of biopathways and their simulations in Genomic Object Net
- Prediction of debacle points for robustness of biological pathways by using recurrent neural networks