Interrelations between Dynamical Properties and Structural Characteristics of Signal Transduction Networks
スポンサーリンク
概要
- 論文の詳細を見る
We present a theoretical approach for understanding the interrelations between dynamics and structure of signal transduction pathways. We consider large sets of networks with a specific number of kinases and phosphatases. Our methods are based on nonlinear differential equations and pathway dynamics is characterised in terms of signal amplification and signal duration. We show that networks with a high number of kinases, high connectivities and low phosphatase activities tend to be unstable and run, therefore, the risk to display autoactivation. Analysis of signal transduction pathways retrieved from databases reveals that several structural characteristics required for pathway stability are fulfilled for networks of very large size.
- 日本バイオインフォマティクス学会の論文
日本バイオインフォマティクス学会 | 論文
- Performance Improvement in Protein N-Myristoyl Classification by BONSAI with Insignificant Indexing Symbol
- A combined pathway to simulate CDK-dependent phosphorylation and ARF-dependent stabilization for p53 transcriptional activity
- A versatile petri net based architecture for modeling and simulation of complex biological processes
- XML documentation of biopathways and their simulations in Genomic Object Net
- Prediction of debacle points for robustness of biological pathways by using recurrent neural networks