Using Feature Generation and Feature Selection for Accurate Prediction of Translation Initiation Sites
スポンサーリンク
概要
- 論文の詳細を見る
Correct prediction of the translation initiation site (TIS) is an important issue in genomic research. We show that feature generation together with correlation based feature selection can be used with a variety of machine learning algorithms to give highly accurate translation initiation site prediction. Only very few features are needed and the results achieve comparable accuracy to the best existing approaches. Our approach has the advantage that it does not require one to devise a special prediction method; rather standard machine learning classifiers are shown to give very good performance on the selected features. The raw and generated features which we have found to be important are the following: positions-3 and-1 in the sequence; upstream k-grams for k=3, 4, and 5; stop-codon frequency; downstream in-frame 3-gram; and the distance of ATG to the beginning of the sequence. The best result, with an overall accuracy of 90%, is obtained by selecting only seven features from this set. The same features retrained with the use of a scanning model achieves an overall accuracy of 94% on this dataset.
- 日本バイオインフォマティクス学会の論文
日本バイオインフォマティクス学会 | 論文
- Performance Improvement in Protein N-Myristoyl Classification by BONSAI with Insignificant Indexing Symbol
- A combined pathway to simulate CDK-dependent phosphorylation and ARF-dependent stabilization for p53 transcriptional activity
- A versatile petri net based architecture for modeling and simulation of complex biological processes
- XML documentation of biopathways and their simulations in Genomic Object Net
- Prediction of debacle points for robustness of biological pathways by using recurrent neural networks