Clustering and Averaging of Images in Single-Particle Analysis
スポンサーリンク
概要
- 論文の詳細を見る
Single particle analysis is a straightforward method for studying the structures of macromoleculest hat cannot be crystallized. It builds three-dimensionasl tructures of particles by estimating the projectiona ngleso f their randomlyo riented electron-microscopiicm ages. The existing methods divide the images into clusters, build class averages for the clusters, and estimate the projection angle of each cluster. However, the clustering and the averaged images are highly sensitive to the choice of reference images and mask patterns for each cluster. Thus, the analyses are neither robust nor automatic, and their results depend heavily on the intuition and experience of researchers who set references.<BR>We have been developing a software system for single-particle analysis with new clustering and averaginga lgorithms for building the three-dimensionasl tructures of target molecules. In this paper, we focus on the algorithmsf or the robust image-processinogf the electronm icroscopic images in our system.
- 日本バイオインフォマティクス学会の論文
日本バイオインフォマティクス学会 | 論文
- Performance Improvement in Protein N-Myristoyl Classification by BONSAI with Insignificant Indexing Symbol
- A combined pathway to simulate CDK-dependent phosphorylation and ARF-dependent stabilization for p53 transcriptional activity
- A versatile petri net based architecture for modeling and simulation of complex biological processes
- XML documentation of biopathways and their simulations in Genomic Object Net
- Prediction of debacle points for robustness of biological pathways by using recurrent neural networks