On Selecting Features from Splice Junctions:An Analysis Using Information Theoretic and Machine Learning Approaches
スポンサーリンク
概要
- 論文の詳細を見る
The computational recognition of precise splice junctions is a challenge faced in the analysis of newly sequenced genomes. This is challenging due to the fact that the distribution of sequence patterns in these regions is not always distinct. Our objective is to understand the sequence signatures at the splice junctions, not simply to create an artificial recognition system. We use a combination of a neural network based calliper randomization approach and an information theoretic based feature selection approach for this purpose. This has been done in an effort to understand regions that harbor information content and to extract features relevant for the prediction of splice junctions. The analysis using the neural network based calliper randomization approach revealed regions important in the internal representation of the network model. The calliper approach captured both correlated as well as independently important features. The feature selection approach captures features that are independently informative. The two different methods can capture features with different properties. Comparative analysis of the results using both the methods help to infer about the kind of information present in the region.
- 日本バイオインフォマティクス学会の論文
日本バイオインフォマティクス学会 | 論文
- Performance Improvement in Protein N-Myristoyl Classification by BONSAI with Insignificant Indexing Symbol
- A combined pathway to simulate CDK-dependent phosphorylation and ARF-dependent stabilization for p53 transcriptional activity
- A versatile petri net based architecture for modeling and simulation of complex biological processes
- XML documentation of biopathways and their simulations in Genomic Object Net
- Prediction of debacle points for robustness of biological pathways by using recurrent neural networks