Computational Inference of Regulatory Pathways in Microbes:An Application to Phosphorus Assimilation Pathways in <I>Synechococcus sp</I>. WH8102
スポンサーリンク
概要
- 論文の詳細を見る
We present a computational protocol for inference of regulatory and signaling pathways in a microbial cell, through literature search, mining "high-throughput" biological data of various types, and computer-assisted human inference. This protocol consists of four key components:(a) construction of template pathways for microbial organisms related to the target genome, which either have been extensively studied and/or have a significant amount of (relevant) experimental data, (b) inference of initial pathway models for the target genome, through combining the template pathway models and target genome-specific information, (c) refinement and expansion of the initial pathway models through applications of various data mining tools, including phylogenetic profile analysis, inference of protein-protein interactions, and prediction of transcription factor binding sites, and (d) validation and refinement of the pathway models using pathway-specific experimental data or other information. To demonstrate the effectiveness of this procedure, we have applied it to the construction of the phosphorus assimilation pathways in cyanobacterium sp. WH8102. We present, in this paper, a model of the core components of this pathway.
- 日本バイオインフォマティクス学会の論文
日本バイオインフォマティクス学会 | 論文
- Performance Improvement in Protein N-Myristoyl Classification by BONSAI with Insignificant Indexing Symbol
- A combined pathway to simulate CDK-dependent phosphorylation and ARF-dependent stabilization for p53 transcriptional activity
- A versatile petri net based architecture for modeling and simulation of complex biological processes
- XML documentation of biopathways and their simulations in Genomic Object Net
- Prediction of debacle points for robustness of biological pathways by using recurrent neural networks