8. Functional Data Analysis:DISSIMILARITY AND RELATED METHODS FOR FUNCTIONAL DATA
スポンサーリンク
概要
- 論文の詳細を見る
Functional data analysis, as proposed by Ramsay (1982), has been attracting many researchers. The most popular approach in recent studies of functional data has been to extend the statistical methods for usual data to functional data. Ramsay and Silverman (1997), for example, proposed regression analysis, principal component analysis, canonical correlation analysis, linear models, etc. for functional data. In this paper, we propose several dissimilarities of functional data. We discuss comparison of these dissimilarities by using the cophenetic correlation coefficient and the sum of squares. Our concern is the effect of dissimilarity on the result of analysis that is applied to dissimilarity data; e. g., cluster analysis.
- 日本計算機統計学会の論文
日本計算機統計学会 | 論文
- MCMC法に基づく多変量階層線形データの分析(セッション5A(学生研究発表賞セッションII))
- コンテンツ・アプリケーション連動型複合統計教材開発と授業への展開(セッション4A)
- 初等中等教育を支援するコンテンツ・アプリケーション連動型複合統計教材の開発(セッション6A)
- 非対称可変分類法のシミュレーションによる評価
- 級内相関係数に関するパーミュテーションテストについて