SAMPLE SIZES OF CLINICAL TRIALS: FOR SCIENCE AND DECISION MAKING
スポンサーリンク
概要
- 論文の詳細を見る
Implicit assumptions in the current use of the Neyman-Pearson approach to sample size calculations when planning for medical clinical trials are noted. The pros and cons of using decision theory instead of or to supplement Neyman-Pearson when planning such trials are discussed. Why the sample sizes suggested by these two approaches are often very different is explained. A computer program is presented and described for the two arm completely randomized trial with a binary endpoint. This program is available from the WEB, requires simple practical input, and is intended to be easily used by the clinical scientist and biostatistician. An example of its use is given which illustrates the additional quantitative insights afforded by using decision theory together with the more customary Neyman-Pearson approach to design clinical trials.
- 日本計算機統計学会の論文
日本計算機統計学会 | 論文
- MCMC法に基づく多変量階層線形データの分析(セッション5A(学生研究発表賞セッションII))
- コンテンツ・アプリケーション連動型複合統計教材開発と授業への展開(セッション4A)
- 初等中等教育を支援するコンテンツ・アプリケーション連動型複合統計教材の開発(セッション6A)
- 非対称可変分類法のシミュレーションによる評価
- 級内相関係数に関するパーミュテーションテストについて