ANALYSIS OF LONGITUDINAL ORDERED POLYTOMOUS DATA USING GENERALIZED ESTIMATING EQUATIONS
スポンサーリンク
概要
- 論文の詳細を見る
A model for the analysis of repeated ordered polytomous data using the generalized estimating equations(GEE)method is presented. Our model is a direct extension of McCullagh's model(1980)for longitudinal data. For independence estimating equations, this model is equivalent to the models proposed by Miller et al.(1993)and Lipsitz et al.(1994). When one extends this model to allow for correlated observation, our model is not equivalent to theirs. Furthermore, our model can estimate the correlations using a simpler working covariance matrix in the second set of estimating equations than that of Miller et al., and it allows for the use of the AR(1)correlation structure, which is not possible using either of the others. Two examples of the analyses of longitudinal ordered polytomous data are given, one for judgmental ordinal data and the other for grouped continuous ordinal data. Among several working correlation models, a relatively simple working correlation structure suffices for each data set.
- 日本統計学会の論文
日本統計学会 | 論文
- 高次元多変量分析におけるパーミュテーションテスト(日本統計学会75周年記念特集(II))
- E-2 Wishart行列の固有ベクトルに関するパーミュテーション検定について
- D-1 相関係数に関するいくつかの検定問題について(多変量解析(1))(日本統計学会第69回大会記録)
- A-1 ベイズ情報量基準のある適用における妥当性(日本統計学会第67回大会記録 : 統計一般理論(3)ベイズ統計学)
- 教育・学習支援のためのデータ指向統計解析環境(統計教育)