A POWER APPROXIMATION FOR THE MULTINOMIAL GOODNESS-OF-FIT TEST BASED ON A NORMALIZING TRANSFORMATION
スポンサーリンク
概要
- 論文の詳細を見る
Cressie and Read(1984)introduced the class of multinomial goodness-of-fit statistics, R<SUP>a</SUP>, based on measures of the divergence between discrete distributions. All R<SUP>a</SUP> have the same chi-squared limiting null distribution. The power of R<SUP>a</SUP> is usually approximated by a noncentral chi-squared distribution that is also the same for all a. In this paper, we propose a new approximation of the power of R<SUP>a</SUP>. The new power approximation, NT, is a normal approximation based on a normalizing transformation. The NT approximation is numerically compared with the other approximations. As a result of the comparison, we find that the NT approximation is superior to the other approximations when a=0(the loglikelihood ratio statistic)and is effective when a<0.
- 日本統計学会の論文
日本統計学会 | 論文
- 高次元多変量分析におけるパーミュテーションテスト(日本統計学会75周年記念特集(II))
- E-2 Wishart行列の固有ベクトルに関するパーミュテーション検定について
- D-1 相関係数に関するいくつかの検定問題について(多変量解析(1))(日本統計学会第69回大会記録)
- A-1 ベイズ情報量基準のある適用における妥当性(日本統計学会第67回大会記録 : 統計一般理論(3)ベイズ統計学)
- 教育・学習支援のためのデータ指向統計解析環境(統計教育)