A NOTE ON THE CORRECTED SCORE FUNCTION ADJUSTING FOR MISCLASSIFICATION
スポンサーリンク
概要
- 論文の詳細を見る
This paper deals with a regression model with covariates subject to misclassification. Simply ignoring the misclassification generally yields bias in parameter estimation. A corrected score function (Nakamura, 1990) is developed to obtain asymptotically unbiased estimates adjusting for the misclassification. It is proved that a corrected score function always exists for a misclassification model whose likelihood consists of independent contributions. This existence theorem for misclassification model is conspicuous since corrected score functions do not always exist for measurement error models with continuous covariates. For instance, a corrected score function does not exist for a logistic model with continuous covariates subject to normal random error (Stefanski, 1989). For illustration, the correction method is applied to generalized linear models and a simulation study based on the logistic regression model is performed. The misclassification are assumed to be nondifferential, which is normally assumed with prospective studies.
- 日本統計学会の論文
日本統計学会 | 論文
- 高次元多変量分析におけるパーミュテーションテスト(日本統計学会75周年記念特集(II))
- E-2 Wishart行列の固有ベクトルに関するパーミュテーション検定について
- D-1 相関係数に関するいくつかの検定問題について(多変量解析(1))(日本統計学会第69回大会記録)
- A-1 ベイズ情報量基準のある適用における妥当性(日本統計学会第67回大会記録 : 統計一般理論(3)ベイズ統計学)
- 教育・学習支援のためのデータ指向統計解析環境(統計教育)