PARAMETER ESTIMATION IN COX'S REGRESSION MODEL FOR COMPETING RISKS WITH MISSING FAILURE TYPES
スポンサーリンク
概要
- 論文の詳細を見る
Cox's regression model is widely used for analyzing survival data under competing risks as well as for single risk. We consider situations in which failure times are observed but failure types cannot be observed for some individuals. For this kind of incomplete data we propose a two-stage estimator of regression coefficients of covariates based on a pseudo-partial likelihood. We show that this estimator is consistent as the sample size tends to infinity. Simulation studies demonstrate that the proposed estimator for the regression coefficients gives smaller mean square errors than a conventional procedure which regards data with missing failure types as censored when sample sizes are small.
- 日本統計学会の論文
日本統計学会 | 論文
- 高次元多変量分析におけるパーミュテーションテスト(日本統計学会75周年記念特集(II))
- E-2 Wishart行列の固有ベクトルに関するパーミュテーション検定について
- D-1 相関係数に関するいくつかの検定問題について(多変量解析(1))(日本統計学会第69回大会記録)
- A-1 ベイズ情報量基準のある適用における妥当性(日本統計学会第67回大会記録 : 統計一般理論(3)ベイズ統計学)
- 教育・学習支援のためのデータ指向統計解析環境(統計教育)