BIVARIATE ERLANG DISTRIBUTION FUNCTIONS
スポンサーリンク
概要
- 論文の詳細を見る
In this paper we study bivariate life distribution functions for the two units subject to sequences of shocks. The following three stochastically independent shock processes are considered: a shock from source 1 is to the unit 1 only, a shock from source 2 is to the unit 2 only and a shock from source 3 is to both units simultaneously. A shock from source i (i=1, 2, 3) occurs randomly in time as events in a Poisson process. If unit i does not fail till it receives ki shocks (i=1, 2), bivariate life distribution functions for two units is called bivariate Erlang distribution functions (BVEr). Throughout the paper monotonic dependency and some properties of BVEr are discussed. It is shown that BVEr has not bivariate increasing failure rate property.
- 日本統計学会の論文
日本統計学会 | 論文
- 高次元多変量分析におけるパーミュテーションテスト(日本統計学会75周年記念特集(II))
- E-2 Wishart行列の固有ベクトルに関するパーミュテーション検定について
- D-1 相関係数に関するいくつかの検定問題について(多変量解析(1))(日本統計学会第69回大会記録)
- A-1 ベイズ情報量基準のある適用における妥当性(日本統計学会第67回大会記録 : 統計一般理論(3)ベイズ統計学)
- 教育・学習支援のためのデータ指向統計解析環境(統計教育)