THE MOVER-STAYER MODEL AND A PROCEDURE FOR THE MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS
スポンサーリンク
概要
- 論文の詳細を見る
The mover-stayer model (Blumen, et al. [6]) was proposed for explaining timedependent human behavior. In the originally proposed model, it was assumed that a population is divided into two types of individuals, i.e., "movers" and "stayers". The mover changes states at any time point according to a time-homogeneous Markov chain, whereas the "stayer" does not change states over time. This model is an attempt to explain time-dependent human bchavior in a heterogencous population. In the present paper, the mover-stayer model is extended to the case where the mover changes states according to a Markov chain with time-dependent transition matrices, and a simple method for obtaining the maximum likeidood estimates of the parameters in the model is constructed. Moreover, the model is applied to real data in the sociometric area to illustrate the estimation procedure.
- 日本統計学会の論文
日本統計学会 | 論文
- 高次元多変量分析におけるパーミュテーションテスト(日本統計学会75周年記念特集(II))
- E-2 Wishart行列の固有ベクトルに関するパーミュテーション検定について
- D-1 相関係数に関するいくつかの検定問題について(多変量解析(1))(日本統計学会第69回大会記録)
- A-1 ベイズ情報量基準のある適用における妥当性(日本統計学会第67回大会記録 : 統計一般理論(3)ベイズ統計学)
- 教育・学習支援のためのデータ指向統計解析環境(統計教育)