AN ITERATED VERSION OF THE GAUSS-MARKOV THEOREM IN GENERALIZED LEAST SQUARES ESTIMATION
スポンサーリンク
概要
- 論文の詳細を見る
In the general linear model with covariance structure, depending on an unknown parameter vector, it is shown that the greatest lower bound for the risk matrix of the generalized least squares estimator (GLSE) constructed with covariance structure estimated from the iterated residuals is that of the Gauss-Markov estimator. A sufficient condition for the existence and the unbiasedness of the GLSE based on iterated residuals is given. It is shown that the use of the iterated residuals does not improve the risk matrix of GLSE through terms of order n-2 relative to that of the two step estimator.
- 日本統計学会の論文
日本統計学会 | 論文
- 高次元多変量分析におけるパーミュテーションテスト(日本統計学会75周年記念特集(II))
- E-2 Wishart行列の固有ベクトルに関するパーミュテーション検定について
- D-1 相関係数に関するいくつかの検定問題について(多変量解析(1))(日本統計学会第69回大会記録)
- A-1 ベイズ情報量基準のある適用における妥当性(日本統計学会第67回大会記録 : 統計一般理論(3)ベイズ統計学)
- 教育・学習支援のためのデータ指向統計解析環境(統計教育)