DOUBLE POWER-NORMAL TRANSFORMATION AND ITS PERFORMANCES:AN EXTENSIVE VERSION OF BOX-COX TRANSFORMATION
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we propose double power-normal transormation that can effectively be used in the analysis of linear models and also in regression analysis, where achievement of the normality of transformed response variable and the linearity of its expected value as a predictor are treated separately. We examine the effectiveness of our transformation with some examples. To investigate the performances of our double powernormal transformation (DPNT), we compare it with the ordinary power-normal transformation (PNT) by Box and Cox (1964), and also with the marginal and joint powernormal transformations for explanatory and response variables proposed by Goto et al. (1983). From these results, we recommend the DPNT as a complementary transformation of the PNT, in the view of covering a certain kind of extended situation different from those seen for the PNT.
- 日本統計学会の論文
日本統計学会 | 論文
- 高次元多変量分析におけるパーミュテーションテスト(日本統計学会75周年記念特集(II))
- E-2 Wishart行列の固有ベクトルに関するパーミュテーション検定について
- D-1 相関係数に関するいくつかの検定問題について(多変量解析(1))(日本統計学会第69回大会記録)
- A-1 ベイズ情報量基準のある適用における妥当性(日本統計学会第67回大会記録 : 統計一般理論(3)ベイズ統計学)
- 教育・学習支援のためのデータ指向統計解析環境(統計教育)