ON A PROBLEM OF A PROBABILITY ARISING FROM POKER
スポンサーリンク
概要
- 論文の詳細を見る
A poker hand consists of five cards which are drawn from a deck of 52 cards. There are 2, 598, 960 (=_??_) different poker hands. The total number of the hands which (i) contain two or more cards of the same rank, or (ii) consist of the same suit, or (iii) consist of circularly consecutive ranks ((ii) and (iii) are not necessarily exclusive) is 1, 299, 480=_??_/2. In this paper we consider a problem arising from this fact. Let us suppose that there is a deck of nk cards of n ranks and k suits, and a hand consists of r cards. Let S(n, k, r) be the total number of the hands which satisfy at least one of (i), (ii) and (iii). Is there any triplet (n, k, r) for r_??_3 other than (13, 4, 5) for which S(n, k, r)=_??_/2 holds. One partial answer is "No" if n_??_10, 000.
- 日本統計学会の論文
日本統計学会 | 論文
- 高次元多変量分析におけるパーミュテーションテスト(日本統計学会75周年記念特集(II))
- E-2 Wishart行列の固有ベクトルに関するパーミュテーション検定について
- D-1 相関係数に関するいくつかの検定問題について(多変量解析(1))(日本統計学会第69回大会記録)
- A-1 ベイズ情報量基準のある適用における妥当性(日本統計学会第67回大会記録 : 統計一般理論(3)ベイズ統計学)
- 教育・学習支援のためのデータ指向統計解析環境(統計教育)