On complex oscillation and a problem of Ozawa
スポンサーリンク
概要
- 論文の詳細を見る
It is shown that if <I>Q</I>(<I>z</I>) is a non-constant polynomial, then all non-trivial solutions of <BR><I>y''</I>+(<I>e</I><SUP><I>z</I></SUP>+<I>Q</I>(<I>z</I>))<I>y</I>=0 <BR>have zeros with infinite exponent of convergence. Similar methods are used to settle a problem of M. Ozawa: if <I>P</I>(<I>z</I>) is a non-constant polynomial, all non-trivial solutions of <BR><I>y''</I>+<I>e</I><SUP>−<I>z</I></SUP><I>y'</I>+<I>P</I>(<I>z</I>)<I>y</I>=0 <BR>have infinite order.
- 国立大学法人 東京工業大学大学院理工学研究科数学専攻の論文
国立大学法人 東京工業大学大学院理工学研究科数学専攻 | 論文
- Noncommutative extension of an integral representation theorem of entropy
- Newton-Puiseux approximation and Lojasiewicz exponents
- Complex hypersurfaces diffeomorphic to affine spaces
- Integral means for the first derivative of Blaschke products
- Cesàro summability of successively differentiated series of a Fourier series and its conjugate series