Meromorphic functions whose derivatives share small functions
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we prove that if the derivatives of two nonconstant meromorphic functions <I>f</I> and <I>g</I> share three small functions CM<SUP>*</SUP>, or share two small functions CM<SUP>*</SUP> and another two small functions IM<SUP>*</SUP>, then <I>f'</I>=<I>g'</I> or <I>f'</I> is a quasi-Möbius transformation of <I>g'</I> mostly.
- 国立大学法人 東京工業大学大学院理工学研究科数学専攻の論文
国立大学法人 東京工業大学大学院理工学研究科数学専攻 | 論文
- Noncommutative extension of an integral representation theorem of entropy
- Newton-Puiseux approximation and Lojasiewicz exponents
- Complex hypersurfaces diffeomorphic to affine spaces
- Integral means for the first derivative of Blaschke products
- Cesàro summability of successively differentiated series of a Fourier series and its conjugate series