Dynamics of polynomial maps on <B><I>C</I></B><SUP>2</SUP> whose all unbounded orbits converge to one point
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we study a family of iteration of polynomial map on the 2-dimensional complex Euclidean space <B><I>C</I></B><SUP>2</SUP> whose all unbounded orbits converge to one point of the line at infinity in the 2-dimensional complex projective space <B><I>P</I></B><SUP>2</SUP>. In particular, we show some sufficient condition for the Lebesgue measure of its Julia set to be equal to 0.
- 国立大学法人 東京工業大学大学院理工学研究科数学専攻の論文
国立大学法人 東京工業大学大学院理工学研究科数学専攻 | 論文
- Noncommutative extension of an integral representation theorem of entropy
- Newton-Puiseux approximation and Lojasiewicz exponents
- Complex hypersurfaces diffeomorphic to affine spaces
- Integral means for the first derivative of Blaschke products
- Cesàro summability of successively differentiated series of a Fourier series and its conjugate series