Minimally immersed Legendrian surfaces in Sasakian 5-manifolds
スポンサーリンク
概要
- 論文の詳細を見る
Minimal, Legendrian surfaces in a Sasakian 5-manifold are considered in terms of the cubic differential form and a generalization of the theorem given by S. Yamaguchi et al is obtained. A lower bound for the index of second variation for those surfaces is also derived.
- 国立大学法人 東京工業大学大学院理工学研究科数学専攻の論文
国立大学法人 東京工業大学大学院理工学研究科数学専攻 | 論文
- Noncommutative extension of an integral representation theorem of entropy
- Newton-Puiseux approximation and Lojasiewicz exponents
- Complex hypersurfaces diffeomorphic to affine spaces
- Integral means for the first derivative of Blaschke products
- Cesàro summability of successively differentiated series of a Fourier series and its conjugate series