Circles in Riemannian symmetric spaces
スポンサーリンク
概要
- 論文の詳細を見る
We show that every circle in a compact Riemannian symmetic space of rank one is obtained as an orbit of a one parameter subgroup of isometries. We also show that a homogeneous space with the above property is either a Euclidean space or a Riemannian globally symmetric space of rank one.
- 国立大学法人 東京工業大学大学院理工学研究科数学専攻の論文
国立大学法人 東京工業大学大学院理工学研究科数学専攻 | 論文
- Noncommutative extension of an integral representation theorem of entropy
- Newton-Puiseux approximation and Lojasiewicz exponents
- Complex hypersurfaces diffeomorphic to affine spaces
- Integral means for the first derivative of Blaschke products
- Cesàro summability of successively differentiated series of a Fourier series and its conjugate series